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Abstract— This research is focused on the consistent, robust 

least squares dummy variable (LSDVR) estimator which is 

predicated on the correction of the bias of the inconsistency of 

the least squares dummy variable estimator of the parameters of 

the dynamic panel data model, as an extension of earlier results. 

We compared the results of the bias corrected least squares 

dummy variable estimator of the dynamic panel data models in 

the presence of outliers, at stated specifications of the model with 

the consistent instrumental variable (IV) and the generalized 

method of moments (GMM) estimators of Anderson and Hsiao 

(AH), Arellano and Bond (AB) and Blundell and Bond (BB) to 

validate the claims or otherwise of the estimators. We observe at 

=  =0.8 and B=0.2 that the robust least squares dummy 

variable estimator (LSDVR) performs better than the IV- GMM 

in finite and large samples in terms of predictive powers and in 

the estimation of the autoregressive coefficient in large samples 

followed by the LSDV, though, with maximum RMSE property 

while the Blundell and Bond (BB) performs better than the 

other contending models in estimation of the autoregressive 

coefficient in finite samples showing that the presence of an 

outlier does not affect the predictive power of the robust least 

squares dummy variable (LSDVR) estimator.  

 
Index Terms— Consistent estimator, dynamic, outliers, panel 

data model 

I. INTRODUCTION 

  Leveraging on the exposition by [1] that the Least Squares 

dummy variable estimator is inconsistent in determining the 

estimates of the parameters of a first order autoregressive 

panel data model at finite time period, T, as the cross sectional 

units, N, becomes infinitely large, certain instrumental 

variable (IV) and generalized method of moments (GMM) 

estimators have been proposed in the econometric literature in 

the accounts of [2], [3] and [4].  

   However, the IV-GMM estimators which includes the 

Anderson Hsiao (AH) instrumental variable estimators, 

Arellano and Bond (AB) generalized method of moments 

estimators and Blundell and Bond (BB) system generalized 

method of moments estimator Could not provide all the cure 

for all the problems inherent in the model as a result of the 

violation of assumption of absence of correlation between the 

explanatory variable and the error term: a condition upon 

which the ordinary least squares and hence the least squares 

dummy variable estimator could be both consistent and 

efficient. In the accounts of [5], [6], [7], [8] and [9], the  
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system GMM was proposed as a result of the weakness of the 

first-differenced instrumental variable IV-GMM estimators 

which suffered small sample bias due to weak instruments. In 

clear terms, all the IV-GMM estimators maintained their 

consistency property, with highly persistent data, when the 

cross section units, N, is large but could be severely biased in 

small samples as in [5]. In large samples, the LSDV estimator, 

though inconsistent, has a small variance, relatively compared 

to the IV-GMM methods as observed by [1], [10] and [11]. 

The fact that the LSDV may be consistent in large samples in 

the direction of T is buttressed by [5] and [7], but has higher 

variance relative to the IV-GMM estimators in small samples 

with highly persistent data says [12].     

   Also , in highly persistent data, the Bias corrected least 

squares dummy variable (LSDVR) estimation of a first order 

autoregressive Panel data model which involves the 

approximation of the bias of the least squares dummy variable 

estimator and taking care of the bias to produce an estimator 

that could be consistent both in large and small samples 

emerged in the accounts of[1],[13] and [7].   

   [1] and [13] used higher order asymptotic expansion 

approximation techniques of order N
-1

T
-1

 and N
-1

T
-2 

respectively to obtain the small sample bias of the LSDV 

under the assumption of homoscedasticity. [14] obtained the 

bias corrected LSDV estimator for a case of cross section 

units heteroscadasticity. [7] obtained the bias corrected least 

squares dummy variable estimator for samples under the 

assumption of homoscedasticity and also worked on the bias 

correction model of the LSDV in the case of time series and 

cross section heteroscedasticity, an extension of the work by 

[14]. 

   This paper is a further extension of the work of [14] and [7] 

and deals strictly with the comparison of the performances of 

the LSDV,LSDVR, AH, AB and BB estimators in the presence 

of an outlier. An effort, still, in search of supportive evidence 

of their performances in the first order autoregressive panel 

data model that is still evolving.    

 

A. Weak Instrument 

   An instrumental variable is a proxy which is highly 

correlated with the included endogenous variable in the 

dynamic panel data model but uncorrelated with the error 

term. The strength of the correlation can be determined using 

the F-statistics since the instrument and instrumented are 

observable.  

In the first order autoregressive panel data model given by  

            itititit VXyy    '

1                                                                                          

          where itV α i +ε it   
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test to determine the absence of correlation between the 

instrument and the error term is conducted using the 

Sagan-Hansen test statistic calculated as 
2TR . 

2R  is the 

coefficient of multiple determination obtained from the OLS 

residuals onto the exogenous variable and T is period as in 

[4]. In a system of linear models, the test is not feasible in 

exactly identified model but rather in over identified models 

where it is expected that the instruments are truly exogenous 

and uncorrelated with the error term says [15].The presence 

of instruments that are correlated with the error term or that 

are poorly correlated to the endogenous explanatory variable 

can make the estimates obtained to be inconsistent and are 

thus regarded as weak instruments. A weak instrument 

produced wrong estimates of parameters and standard errors 

while the good instrument is expected to be highly correlated 

with the instrumented and uncorrelated with the error to 

produce correct estimates of the parameters and their standard 

errors. 

 

B. Generalized Method of Moments (GMM) Estimator 

   Generalized method of moments (GMM) estimation is the 

application of Instrumental variable to an over-identified 

model, i.e. when the number of instruments is greater than or 

equal to the number of covariates in the equation of interest. It 

should be recalled that if instruments are greater than the 

number of covariates, this is over identification. In other 

words, the GMM is a generalization of the just-identified 

instrumental variable estimator. 

   The danger of instrumental variable method is that it may be 

difficult to find a good instrument but may introduce 

multicollinearity. Hence [4] and [5] suggested the use of 

maximum likelihood estimation method with it limitations: 

methodologically and practical wise, especially in data 

involving large cross sections.  

 

C. Heteroscedasticity 

Heteroscedasticity is the presence of unequal variance of the 

error term in a model. Unequal error variance is a violation of 

the assumption of equal error variance (homoscedasticity) 

upon which the OLS is BLUE and efficient which is worth 

correcting only when it is severe as in [4]. However, in the 

presence of heteroscedasticity OLS is BLUE but not efficient. 

Under heteroscedasticity the estimates of the coefficients 

using OLS is unbiased but their standard errors may be biased 

in the accounts of [4] and [16].  

 

D. Outlier 

An outlier is an observation, which is much different in 

magnitude, i.e. either very large or very small compared to 

other observation within the same sample. In other words, 

they are perceived to be from a population other than that 

from which the other sample observations are generated as in 

[4] and [15]. Outliers could be a source of heteroscedasticity. 

Outliers could be a result of the unobservable individual 

effects in a panel data study, such as effects of government 

policies, available resources and their uses, political will of 

the leader, level of patriotism of the citizenry, and generally, 

the individual attributes of the units of a cross-section.  

II. APPROXIMATING THE INCONSISTENCY OF THE LSDV 

    itiititit Xyy   

'

1 ,      I=1,2,…,N; t=1,2,…,T                  

(1)  

where ity is the value of y for the ith individual or group at 

period, t, a TX1 vector of dependent variable. 1, tiy is the 

immediate value of y at the immediate past one period t-1 for 

the ith cross section unit or group. itX is the value of the 

exogenous explanatory variable at period, t for the ith cross 

section unit or group and ((N-1) X1) vector . i is the 

unobserved ith unit or group effect term and  it is an error 

term that has mean zero and variance 
2

 . 

   When we consider the LSDV by within estimation obtained 

by the application of the ordinary least squares on the 

transformed model:                                          

                ~~~~
1   Xyy                                                   (2) 

such that:       ywww '1' ~)~~(ˆ                                                 (3) 

and:           ],~[~
1 Xyw                                                    (4) 

1
~
y and X

~
 are observations that have been centered and 

stacked over time such that 1
~
y  is an (NTX1) vector of 

lagged endogenous explanatory variable and X
~

 is an 

(NTX1) vector of strictly exogenous explanatory variables  in 

the accounts of [7].  

              ),(ˆ '                                                        (5) 

̂ is an ((N+1)X1) vector of coefficients as in [5]. 

The inconsistency of the LSDV at finite period, T and large 

cross section units,N, is evidenced by  

          oyy itiit   )]~)(~cov[( 1,1                           (6) 

and can be estimated using partition regression technique in 

line with [7],for the errors of   and   as 

                  ~)~~(ˆ '

1

1

1

'

1 



 yyDy                                (7) 

            

 ~~
)ˆ~

()ˆ(~~
)

~~
(ˆ '1'

1

'1' XXyXXX 



             

(8) 

where:           ˆ~~~ wy                                                    (9)     

and 
'1' ~

)
~~

(
~

1 XXXXD  .  

   Then taking probability limits, we have: 

)~~1
lim()~~1

lim()ˆ(lim '1'

1  Dy
N

PyDy
N

PP NNN 



                                                                                        

(10) 
   )ˆ(lim~~

)
~~

(lim)ˆ(lim 1

'1'   



 NNN PyXXXPP                                                                                      

(11) 

From (10):  ~~1
lim~~1

lim '

1

'

1   y
N

PDy
N

P NN
                                                       

                                                                                     (12) 

because X is assumed to be strictly exogenous. 

   Then from (12) 

])~~[(
1~~1

lim '

1

'

1  



  yE
N

y
N

P Lim
N

N
                           

                                                                                     (13) 
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By further decomposition, we obtain 

            )()~~( '

1 TTtryE                                                    

                                                                                     (14) 

                  Substituting (14) into (13), we obtain (15) in 

accordance with [7] and [14]. 

  

)()
1

()(
1~~1

lim
1

'

1 TT

N

i

i
N

TTT
N

N tr
N

Limtrtr
N

Limy
N

P   



 

                                                                                     (15) 

 Under the assumption of homoscedasticity for which 

TT I2 , we have that 

  

)
)1(

1

1

1
()()(~~1

lim
2

222'

1















T
trItry

N
P

T

TTTN

                                                                                     (16) 

 

which would result to the bias approximations below with 

reasonable level of accuracy: 

   

)();();( 21

323

11

212

1

11

  TNcBBTNcBBTcB

                                                                                     (17) 

where 21,cc and 3c depended on the unknown parameters 

2

 and  . 

Substituting (15) into (10) we obtain:  

   
2

/1
/)()ˆ(lim XyTTN trP


                                  

                                                                                     (18) 

Also, substituting (14) into (9), we obtain 

)ˆ(lim)ˆ(lim    NN PP                              

                                                                                     (19) 

    (18) and (19) are the bias approximation of the LSDV 

estimator derived by [7] directly from the data without initial 

resort to any consistent estimator 

1

'~~1
lim

1 





yX
N

P
N

xy
, 

XX
N

P
N

xx

~~1
lim '



 and   
222

/ 111
)1(


 yxyXy  . 

1111

1'2


 

xyxyxyxy is the squared multilple correlation 

coefficient of 1y  regressed on X and 
1

1


 

xyxx is the 

corresponding vector of regression coefficients for   and   

unknown. 

III. ROBUST LEAST SQUARES DUMMY VARIABLE (LSDVR) 

ESTIMATOR 

The robust least squares dummy variable estimation is 

predicated on the derivation of an approximate expression for 

the inconsistency of the LSDV which could be used to correct 

for the bias of the LSDV. In [5], the robust LSDV estimator is 

implemented by finding consistent estimates for 
2

  and  , 

subtracting each or any of the bias approximation cB in (17) 

from the LSDV obtained by within estimation, we obtain the 

robust LSDV, RLSDV , estimator below: 

    cR BLSDVLSDV ˆ ,   c= 1, 2 and 3:  AH=1, AB=2 

and BB=3                                                                       (20)  

The consistent estimator of 
2

  is obtained by  

        

'
2ˆ c c
c

e De

N K T
 

 
,    KTN                                         

                                                                                       (21) 

 where cc Hwye ˆ and C= AH, AB and BB, are the 

consistent estimators of  .  

   It is pertinent to point out, at this juncture, that the bias 

approximation derived by [1], [2] and [7] assumed 

homoscedasticity of the error variance in their studies. The 

additive bias corrected LSDV estimator by [7] , just like that 

of [2], relied upon the consistent IV-GMM estimators of   to 

determine the bias such that the bias corrected LSDV 

estimators are:  

    
2

/

..

1

)ˆˆ(
ˆˆ

Xy

gmmTGmmT

DV

tr







                                (22) 

   

1

. .

2

/

ˆ ˆ( )ˆ ˆ T Gmm T Gmm
DV

y X

tr
  




 
                             (23) 

where GMMT .  and GMMT . are the variance structures 

which depended on   and   respectively, and can be 

obtained by their sample equivalence as explained earlier in a 

section above while T  can be estimated from: 

           )ˆ(ˆ 2

.. gmmtGMMT diag                                        (24) 

   For which  
'

1 12

.

ˆ ˆˆ ˆ( ) ( )
ˆ

( 1) /

t gmm t t gmm gmm t t gmm

t gmm

y y X y y X

N T T

   


    



             

(25) 

and 1
~,~

tt yy and tX
~

are stacked across individuals such that 

)~,...,~,~(~
21 Ntttt yyyy   

   According to [7] , to take care of a non linear bias 

correction, the bias corrected estimator is not feasible for   

is obtained by solving  

               
2

1/

( )
ˆ T T

y X

tr
 

 

 
    for   while assuming, 

first, that the variance structure T is given by 
2

1y and   . 

T , 
2

1y and  are all unknown and the consistent 

estimator of T  [7]. 

By a system of K equations, the bias corrected   and   are 

obtained from 

     
2

/1
ˆ)ˆˆ(ˆ

XyTTDV tr


                               (26)  

     
1

2

/
ˆ ˆˆ ˆ( )DV T T y Xtr   


                             (27)  

where 

     )ˆ(ˆ 2

tT diag  ;      
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TTN

XyyXyy ttttt
t

/)1(

)
~~~()

~~~(
ˆ

'

1

'

12




  

  

IV. DESIGN OF THE EXPERIMENT 

To provide for effective comparison of the performance of the 

robust LSDV estimator, ( RLSDV ), against the AH, AB, and 

BB, we generated the ty value as it is defined in (1), i.e. Yit = 

X
1

it +  Yit-1 + i + εit , a simple dynamic panel data model 

with fixed effects i.e. having a time invariant individual or 

group specific effects, i ,  and generated tX  using the 

generating equation Xit = Xit-1 + et ,  eN(O,1),  / /<1,  

making provision for an outlier.  

   We specified =0.8,  =0.8 and =0.2 in the general 

models and specified two models: (1) for finite samples (i.e. 

n=11 and t=50) and (2) for large samples (i.e. n=51 and t=10). 

The start up values Yi0 and Xi0 are obtained using the 

procedures by [17]. for i = Q1 it+ ,  , we fix Q1 

at 0.8 as in [18]. We then used the within estimation of (2) to 

obtain the LSDV parameter estimators which are  and   

. The experiment conducted is replicated five hundred 

(500) times. The root mean square errors (RMSE) of the 

estimated model, the root mean square errors (RMSE ) of 

the estimated autoregressive coefficients as well as the Akaike 

Information Criterion (AIC) are employed for model 

comparisons.  We employed Stata 10.0, Excel 2007 and 

Minitab statistical packages in the analysis to cushion the 

cumbersome nature of some estimators, 

V. RESULTS AND DISCUSSIONS 

The results of the simulation analysis for the various 

estimators considered is shown in the table 1 below at the two 

specifications of time and cross-sections for  = =0.8 and 

=0.2. 

 

Table 1. Simulation analysis of the various estimators of the dynamic panel data model in the presence of outliers 

Estimator 
1.  n=11, t=50 2.  n=51, t=10 

RMSE AIC BIAS  RMSE  RMSE AIC BIAS  RMSE  

LSDVR 0.01109 1.308 0.00102 0.00121 0.00101 0.1601 0.0124 0.0106 

BB 0.01201 1.4529 -0.0061 0.00695 0.01038 0.198 0.00224 0.0057 

AB 0.01245 1.5616 -0.0076 0.0089 0.0113 0.1952 0.0023 0.0068 

AH 0.01114 1.351 0.01645 0.01764 0.01113 0.1937 0.0038 0.0098 

LSDV 0.0133 1.5212 0.01147 0.00143 0.01374 0.1765 0.0206 0.0401 

 

From the results of the study, the Blundell and Bond (BB) 

generalized method of moments (gmm) consistent estimator  

recorded minimum error in the autoregressive term with 

RMSEY=0.0057 in finite samples  with large number of 

cross-sections (n=51) and finite period of time (t=10) or 

specification 1: this buttressed the results of [2], [7], [12] and 

[5], while the robust least squares dummy variable estimator 

(LSDVR) showed high predictive power of the model by 

returning the least values in the RMSE=0.0010 and 

AIC=0.1601 at the same specification 2 as well as in 

specification 1. The robust least squares dummy variable 

estimator (LSDVR) recorded the minimum error values of the 

autoregressive term with RMSEY=0.00121 in specification 1.      

The error values are generally lower in specification 2, 

relatively, compared to those of the specification 1. The 

unsteady nature of the Arellano and Bond (AB) consistent 

estimator that led to the introduction of the BB system GMM 

estimator is seen as it recorded higher values of RMSE’s of 

0.01245 and 0.0113 in specifications 1 and 2 respectively, 

relative to the other consistent estimators. However, the 

LSDVR recorded minimum RMSEY of 0.00101 in finite 

samples with large cross-section of n=51 and t=10 which is in 

agreement with the report of [7]. The bias of the least squares 

dummy variable estimator is approximated by the Blundell 

and Bond (BB) and its effects on the results of the robust least 

squares dummy variable estimator is quite glaring as the 

robust least squares dummy variable estimator (LSDVR) 

produced the minimum error in large samples of small 

number of cross sections (n=11) and long time period (t=50). 

It is observed that even in the presence of outliers the  

 

predictive power of the robust least squares dummy variable 

estimator (LSDVR) is more powerful than the other competing 

models and it is the most efficient except in the finite sample 

where the BB is the most efficient model in estimating the 

autoregressive coefficient.        
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